Spatially Continuous Populations

Classical models of structured populations assume that individuals reproduce and disperse independently, and so do not account for many features seen in real populations. Correlations across loci reveal their shared history, patterns may extend over very large spatial scales, and diversity is often lower than expected from census numbers. 

Jerome Kelleher (Oxford),  Alison Etheridge (Oxford) and  Nick Barton are working on a model of long-range extinction and recolonisation. Unlike the classical models, this has a well-defined backwards process, which can be used to simulate the genealogy of a sample of neutral genes.

Other projects include work with Michael Turelli (UC Davis) to optimise a program to eliminate dengue fever and other diseases by releasing Wolbachia infected mosquitoes (EliminateDENGUE), and work by Parvathy Surendranadh to model the spatial structure of the Antirrhinum hybrid zone.

Recent Papers

Schmidt, T.L, Barton, N.H., Rasic, G., Turley, A.P., Montgomery, B.L., Iturbe-Ormaetxa, I., Cook, P.E., Ryan, P.A., Ritchie, S.A., Hoffmann, S.L., O’Neill, S.L., Turelli, M. 2017. Successful local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biology  

Arathoon, L., Surendranadh, P., Barton, N.H., Field, D.L., Pickup, M., Baskett, C.A. 2020. Estimating inbreeding depression in a long-term study of snapdragons.  bioRxiv